Dr. Otis Wright

Cedarville University Dept of Math and Science

Otis C. Wright, III, Ph.D.

Professor of Mathematics
Department of Science and Mathematics
Cedarville University
251 N. Main Street
Cedarville, Ohio 45314


Contact Information:

  • Office: ENS 341B
  • Phone: 937-766-7690
  • E-mail: wrighto@cedarville.edu

Education:


Teaching Activities:

  • GMTH-1010: Introduction to Mathematics
  • GMTH-1030: Precalculus
  • GMTH-1040: Calculus for Business
  • GMTH-3100: Theory of Interest
  • MATH-1990: Beautiful Math Structures and Thinking
  • MATH-1710, 1720, 2710: Calculus I, II, III
  • MATH-2740: Differential Equations
  • MATH-3750: Introduction to Dynamical Systems
  • MATH-3760: Numerical Analysis
  • MATH-4710, 4720: Real Variables I, II
  • MATH-4800: Capstone Course in Mathematics

Research Activities:

  • Nonlinear wave equations.
  • Bäcklund transformations and soliton equations.
  • Applied mathematics.

Publications:

  1. The KdV Zero Dispersion Limit: Through First Breaking for Cubic-like Analytic Initial Data, O. C. Wright, Communications on Pure and Applied Mathematics, 47 (1993) 423-440.
  2. Birefringent Optical Fibers: Modulational Instability in a Near-Integrable System, D. Muraki, O. C. Wright, D. W. McLaughlin, Nonlinear Processes in Physics: Proceedings of III Potsdam-V Kiev Workshop at Clarkson University, Potsdam, NY, USA, August 1-11, 1991, eds. A. S. Fokas, et al., Springer-Verlag, 1993, pp. 242-246.
  3. Explicit Construction of the Lax-Levermore Minimizer for the KdV Zero Dispersion LimitL, O. C. Wright, Proceedings of the NATO Advanced Workshop: Singular Limits of Dispersive Waves, 1991, eds. N. Ercolani, et. al., Plenum Press, 1994, pp.157-164.
  4. Modulational Instability in a Defocussing Coupled Nonlinear Schrödinger System, O. C. Wright, Physica D, 82 (1995) 1-10.
  5. On the Exact Solution of the Geometric Optics Approximation of the Defocusing Nonlinear Schrödinger Equation, O. C. Wright, M. G. Forest, K. T. R. McLaughlin, Physics Letters A, 257 (1999) 170-174.
  6. Near Homoclinic Orbits of the Focusing Nonlinear Schrödinger Equation, O. C. Wright, Nonlinearity, 12(5) (1999) 1277-1287.
  7. The Stationary Equations of a Coupled Nonlinear Schrödinger System, O. C. Wright, Physica D, 126 (1999) 275-289.
  8. Some Riemann-Green Functions for the Geometric Optics Approximation of the Defocusing Nonlinear Schrödinger Equation, O. C. Wright, M. G. Forest, K. T. R. McLaughlin, 141-4, pp. 1-6, 16th IMACS World Conference Proceedings, Lausanne, Switzerland, August 21-25, 2000, eds. M. Deville and R. Owens, ISBN 3-9522075-1-9, Department of Computer Science, Rutgers University, NJ, USA.
  9. On the Bäcklund-Gauge Transformation and Homoclinic Orbits of a Coupled Nonlinear Schrödinger System, O. C. Wright and M. G. Forest, Physica D, 141 (2000) 104-116.
  10. Non-focusing Instabilities in Coupled, Integrable Nonlinear Schrödinger PDEs, M. G. Forest, D. McLaughlin, D. Muraki, O. C. Wright, Journal of Nonlinear Science, 10 (2000) 291-331.
  11. On the construction of Orbits Homoclinic to Plane Waves in Integrable Coupled Nonlinear Schrödinger Systems, M. G. Forest, S. P. Sheu, O. C. Wright, Physics Letters A, 266 (2000) 24-33.
  12. An Integrable Model for Stable:Unstable Wave Coupling Phenomena, M. G. Forest, O. C. Wright, Physica D, 178 (2003) 173-189.
  13. The Darboux Transformation of some Manakov Systems, O. C. Wright, Applied Mathematics Letters, 16 (2003) 647-652.
  14. Homoclinic Connections of Unstable Plane Waves of the Modified Nonlinear Schrödinger Equation, O. C. Wright, Chaos, Solitons & Fractals, 20(4) (2004) 735-749.
  15. Homoclinic Connections of Unstable Plane Waves of the Long-wave-short-wave Equations, O. C. Wright, III, Studies in Applied Mathematics 117 (2006) 71-93.
  16. Dressing procedure for some homoclinic connections of the Manakov system, O. C. Wright, III, Applied Mathematics Letters 19 (2006) 1185-1190.
  17. Sasa-Satsuma equation, unstable plane waves and heteroclinic connections, O. C. Wright, III, Chaos, Solitons & Fractals 33 (2007) 374-387.
  18. On the exact solution for smooth pulses of the defocusing nonlinear Schrödinger modulation equations prior to breaking, M. G. Forest, C.-J. Rosenberg and O. C. Wright, III, Nonlinearity 22 (2009) 2287-2308.
  19. Some homoclinic connections of a novel integrable generalized nonlinear Schrödinger equation, O. C. Wright, III, Nonlinearity 22 (2009) 2633-2643.
  20. On a homoclinic manifold of a coupled long-wave-short-wave system, O. C. Wright, III, Communications in Nonlinear Science and Numerical Simulation, 15 (2010) 2066-2072.