Otis C. Wright, III, Ph.D.
Professor of Mathematics
Department of Science and Mathematics
Cedarville University
251 N. Main Street
Cedarville, Ohio 45314


Contact Information:


Education:


Teaching Activities:

Current students should access the WebCT online course system in order to view course materials.


Research Activities:


Publications:

  1. The KdV Zero Dispersion Limit: Through First Breaking for Cubic-like Analytic Initial Data, O. C. Wright, Communications on Pure and Applied Mathematics, 47 (1993) 423-440.
  2. Birefringent Optical Fibers: Modulational Instability in a Near-Integrable System, D. Muraki, O. C. Wright, D. W. McLaughlin, Nonlinear Processes in Physics: Proceedings of III Potsdam-V Kiev Workshop at Clarkson University, Potsdam, NY, USA, August 1-11, 1991, eds. A. S. Fokas, et al., Springer-Verlag, 1993, pp. 242-246.
  3. Explicit Construction of the Lax-Levermore Minimizer for the KdV Zero Dispersion Limit, O. C. Wright, Proceedings of the NATO Advanced Workshop: Singular Limits of Dispersive Waves, 1991, eds. N. Ercolani, et. al., Plenum Press, 1994, pp.157-164.
  4. Modulational Instability in a Defocussing Coupled Nonlinear Schrödinger System, O. C. Wright, Physica D, 82 (1995) 1-10.
  5. On the Exact Solution of the Geometric Optics Approximation of the Defocusing Nonlinear Schrödinger Equation, O. C. Wright, M. G. Forest, K. T. R. McLaughlin, Physics Letters A, 257 (1999) 170-174.
  6. Near Homoclinic Orbits of the Focusing Nonlinear Schrödinger Equation, O. C. Wright, Nonlinearity, 12(5) (1999) 1277-1287.
  7. The Stationary Equations of a Coupled Nonlinear Schrödinger System, O. C. Wright, Physica D, 126 (1999) 275-289.
  8. Some Riemann-Green Functions for the Geometric Optics Approximation of the Defocusing Nonlinear Schrödinger Equation, O. C. Wright, M. G. Forest, K. T. R. McLaughlin, 141-4, pp. 1-6, 16th IMACS World Conference Proceedings, Lausanne, Switzerland, August 21-25, 2000, eds. M. Deville and R. Owens, ISBN 3-9522075-1-9, Department of Computer Science, Rutgers University, NJ, USA.
  9. On the Bäcklund-Gauge Transformation and Homoclinic Orbits of a Coupled Nonlinear Schrödinger System, O. C. Wright and M. G. Forest, Physica D, 141 (2000) 104-116.
  10. Non-focusing Instabilities in Coupled, Integrable Nonlinear Schrödinger PDEs, M. G. Forest, D. McLaughlin, D. Muraki, O. C. Wright, Journal of Nonlinear Science, 10 (2000) 291-331.
  11. On the construction of Orbits Homoclinic to Plane Waves in Integrable Coupled Nonlinear Schrödinger Systems, M. G. Forest, S. P. Sheu, O. C. Wright, Physics Letters A, 266 (2000) 24-33.
  12. An Integrable Model for Stable:Unstable Wave Coupling Phenomena, M. G. Forest, O. C. Wright, Physica D, 178 (2003) 173-189.
  13. The Darboux Transformation of some Manakov Systems, O. C. Wright, Applied Mathematics Letters, 16 (2003) 647-652.
  14. Homoclinic Connections of Unstable Plane Waves of the Modified Nonlinear Schrödinger Equation, O. C. Wright, Chaos, Solitons & Fractals, 20(4) (2004) 735-749.
  15. Homoclinic Connections of Unstable Plane Waves of the Long-wave-short-wave Equations, O. C. Wright, III, Studies in Applied Mathematics 117 (2006) 71-93.
  16. Dressing procedure for some homoclinic connections of the Manakov system, O. C. Wright, III, Applied Mathematics Letters 19 (2006) 1185-1190.
  17. Sasa-Satsuma equation, unstable plane waves and heteroclinic connections, O. C. Wright, III, Chaos, Solitons & Fractals 33 (2007) 374-387.
  18. On the exact solution for smooth pulses of the defocusing nonlinear Schrödinger modulation equations prior to breaking, M. G. Forest, C.-J. Rosenberg and O. C. Wright, III, Nonlinearity 22 (2009) 2287-2308.
  19. Some homoclinic connections of a novel integrable generalized nonlinear Schrödinger equation, O. C. Wright, III, Nonlinearity 22 (2009) 2633-2643.
  20. On a homoclinic manifold of a coupled long-wave-short-wave system, O. C. Wright, III, Communications in Nonlinear Science and Numerical Simulation, 15 (2010) 2066-2072.